2,318 research outputs found

    Hypo- and hyper-virulence in apricot trees infected by European stone fruit yellows

    Get PDF
    An apricot orchard, located in an area of north eastern Italy under serious pressure from European stone fruit yellows (ESFY) infection, has been monitored since the year it was planted (1990). During this time, most of the trees displayed symptoms or were shown by PCR analyses to be infected. Two groups of apricot trees were particularly interesting: some trees were asymptomatically infected while others recovered from the symptoms but not from the pathogen. In order to isolate those strains of the phytoplasma characterised by varying virulence, each of the two groups was used as mother plants and propagated. The new trees were used to constitute experimental orchards, where they were observed for the presence of symptoms and in part were tested by PCR, starting in 2003. The results obtained confirmed the presence of strains of the pathogen characterised by varying virulence. The strains originally present in infected apricot trees which recovered from the symptoms of ESFY were seen to be hypovirulent; none of the propagated infected trees ever showed symptoms of the disease. Surprisingly, the strains present in asymptomatic apricot mother plants were hypervirulent and the propagated trees always displayed severe symptoms. In the propagated trees, the transmission of the pathogen was higher in the hypervirulent strains than in the hypovirulent ones. A graft transmission trial carried out in the greenhouse using some of the identified hypo- and hypervirulent strains, confirmed the results obtained in open field. Real time PCR analyses showed that in the trees infected by hypovirulent strains the colonisation of the pathogen was lower than in those infected by the hypervirulent strains. It is possible to affirm that the hypovirulent strains were present in those mother plants which had originally recovered. The research will continue with the aim of verifying the possibility of cross protection among the identified hypo- and hypervirulent strains.Keywords: ‘Candidatus Phytoplasma prunorum’, real-time PCR, Prunu

    S-Rich PbS Quantum Dots:A Promising p-Type Material for Optoelectronic Devices

    Get PDF
    PbS colloidal quantum dots (CQDs) are versatile building blocks for bottom-up fabrication of various optoelectronic devices. The transport properties of thin films of this class of materials depend on the size of the CQDs, their surface ligands, and stoichiometry. The most common synthetic methods yield PbS CQDs with an excess of Pb atoms, which induces n-type transport properties in CQD films. In this work, we developed a new synthesis, which offers S-rich PbS CQDs. Thanks to their sufficient colloidal stability in nonpolar solvents, we established a protocol for the integration of these CQDs into thin field-effect transistors and found strong hole-dominated transport with a hole mobility of about 1 × 10–2 cm2/Vs. Moreover, we were able to enhance the electron mobility for almost two orders of magnitude while keeping the hole mobility nearly the same. This approach allows us to obtain reliably p-doped PbS CQDs, which can be used for the fabrication of various electronic and optoelectronic devices.ISSN:0897-475

    Scalable fabrication of efficient p-n junction lead sulfide quantum dot solar cells

    Get PDF
    Nowadays, the best lead sulfide (PbS) colloidal quantum dot (CQD) solar cells are primarily demonstrated in the n-p structure, while the p-n structure is significantly less developed. This technological gap between the n-p and p-n structures is much more distinct than in cases of other solution-processable photovoltaic technologies like perovskites and polymers. Here, we propose a scalable fabrication strategy for efficient PbS QD solar cells with p-n structure. An industrially suited blade-coating technique has been used to deposit both n-type and p-type QD layers. The obtained solar cells demonstrated power conversion efficiency of 9%, thus, commensurate to the record device efficiency with this architecture fabricated with a non-scalable technique. The availability of both p-n and n-p structures fabricated from scalable methods may promote the future integration of the PbS QDs into tandem devices together with other solution-processable materials to exploit the most prominent benefits of the PbS QDs, such as infrared absorption.</p

    OD26 - Inverse consistency error as a validation metric for deformable image registration: preliminary implementation research

    Get PDF
    The aim of this work is to develop a novel automatic voxel-based quantitative measurement approach to evaluate the registration accuracy of a Deformable Image Registration (DIR) algorithm in clinical practice. As the Inverse Consistency Error (ICE) can be computed directly from the deformation vector field (DVF) generated by the Treatment Planning System (TPS), it appears to be a valid surrogate of standard quality assurance metrics to assess the spatial error in the registration process

    Electroluminescence Generation in PbS Quantum Dot Light-Emitting Field-Effect Transistors with Solid-State Gating

    Get PDF
    The application of light-emitting field-effect transistors (LEFET) is an elegant way of combining electrical switching and light emission in a single device architecture instead of two. This allows for a higher degree of miniaturization and integration in future optoelectronic applications. Here, we report on a LEFET based on lead sulfide quantum dots processed from solution. Our device shows state-of-the-art electronic behavior and emits near infrared photons with a quantum yield exceeding 1% when cooled. We furthermore show how LEFETs can be used to simultaneously characterize the optical and electrical material properties on the same device and use this benefit dot film. to investigate the charge transport through the quantum dot film

    Stoichiometric control of the density of states in PbS colloidal quantum dot solids

    Get PDF
    Colloidal quantum dots, and nanostructured semiconductors in general, carry the promise of overcoming the limitations of classical materials in chemical and physical properties and in processability. However, sufficient control of electronic properties, such as carrier concentration and carrier mobility, has not been achieved until now, limiting their application. In bulk semiconductors, modifications of electronic properties are obtained by alloying or doping, an approach that is not viable for structures in which the surface is dominant. The electronic properties of PbS colloidal quantum dot films are fine-tuned by adjusting their stoichiometry, using the large surface area of the nanoscale building blocks. We achieve an improvement ofmore than two orders ofmagnitude in the holemobility, from below 10(-3) to above 0.1 cm(2)/N.s, by substituting the iodide ligands with sulfide while keeping the electron mobility stable (similar to 1 cm(2)/V.s). This approach is not possible in bulk semiconductors, and the developed method will likely contribute to the improvement of solar cell efficiencies through better carrier extraction and to the realization of complex (opto) electronic devices

    PCR/RFLP-based method for molecular characterization of ‘Candidatus Phytoplasma prunorum’ strains using the aceF gene.

    Get PDF
    New molecular typing tools for phytoplasmas belonging to the 16SrX phytoplasma group have recently been developed based on the non-ribosomal genes aceF, pnp, imp, and SecY. In the present work we chose to perform a PCR-RFLP method based on the aceF gene. This genetic marker had previously shown high variability among strains of the 16SrX group, moreover, it had allowed for the differentiation of French hypovirulent ‘Candidatus Phytoplasma prunorum’ strains from virulent ones.Most of the stone fruit samples were collected in north-east Italy, although a few samples from Bosnia and Herzegovina, and Turkey were also included in the work to explore variability. French hypovirulent and virulent strains, one Azerbaijan strain and ‘Ca. P. prunorum’ strains maintained in periwinkles were used as reference strains. Some of the Italian samples were not collected in the field and they became infected by Cacopsylla pruni under controlled conditions.Sequencing of the aceF gene was performed on some of the samples tested and based on the alignment, a few restriction enzymes were selected for ‘Ca. P. prunorum’ strain differentiation. Nested PCR was performed using previously developed primers on all samples and RFLP analyses were carried out with BpiI, HaeIII and Tsp509I enzymes. BpiI and HaeIII enzymes generated two different profiles, one profile was undigested and the second one constituted by two different fragments. The Tsp509I enzyme enabled three different pattern types to be distinguished. Combining the results obtained with the three restriction enzymes, it was possible to distinguish between the ‘Ca. P. prunorum’ strains investigated in this study: 6 different RFLP subgroups AceF-A, -B, -C, -D, -E and –F. We confirmed that strains belonging to 4 subgroups, AceF-A, -B, -C and -E were present in north-east Italy, where a large number of the samples were processed. The strains of AceF-A and -E subgroups were the predominant ones (21.6% and 17.0%, respectively) and mixed infections of AceF-A+E subgroups (17.0%), and AceF-B+E (14.8%) subgroups were quite common. Keywords: phytoplasma, European stone fruit yellows, molecular differentiation, sequencin
    • …
    corecore